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SO(2n + 1) in an SO(2n - 3)OSU(2) OSU(2) basis: 
11. Detailed study of the symmetric representations 
of the SO(7) group 

G Vanden Berghe, H De Meyert and P De WildeS 
Seminarie voor Wiskundige Natuurkunde, RUG Krijgslaan 28149,  B-9000 Gent, 
Belgium 

Received 22 January 1982 

Abstract. The SO(7)L[SU(2)]3 reduction is analysed in detail. Explicit forms for the 
differeni SU(2) generators and the remaining ones are derived. Using the results of the 
previous paper, basis states describing the symmetric irreducible unitary representations 
are introduced. Expressions for the reduced matrix elements of the occurring generators 
with respect to these basis states are determined. 

1. Introduction 

The wavefunctions of an N-octupole-phonon state are fully classified by seven labels. 
It is well known that these states may be viewed as symmetric representation states 
of the unitary group U(7). Four of the necessary labels are usually withheld as the 
ones related to the Casimir operators of the groups appearing in the chain U(7 )3  
SO(7) 3 SO(3) 3 S0(2), i.e. the boson number N, the seniority v ,  the angular momen- 
tum 1 and its projection m. A complete classification of the octupole vibrations of 
the nucleus has been discussed within this chain by Rohozinski (1978). The supplemen- 
tary introduced labels are the number of quartets and sextets of phonons coupled to 
spin zero and a non-physical label defining a residual factor. The states derived in 
this way are however not orthogonal in the extra indices and have not been normalised. 
Furthermore, the internal labels are not related to the eigenvalue of an operator. 

Some time ago the authors developed a method by which it was possible to construct 
operators which commute with the Casimir operators of the four above-mentioned 
groups and which are independent of them. In a set of papers (De Meyer and Vanden 
Berghe 1980, Vanden Berghe and De Meyer 1980, Vanden Berghe et a1 1981, De 
Meyer et a1 1982b) it has been shown with the use of the shift operator techniques 
how the eigenvalues of such operators can be deduced in a general way. Up to now 
one supplementary label could be assigned as the eigenvalue of a scalar shift operator. 
Further work is in progress in order to construct a second and a third operator whose 
eigenvalues can be used for the purposes we pursue. 

Another angle from which the matter can be looked at consists in studying other 
subgroup structures of SO(7) than the principal subgroup SO(3). One of the 
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possibilities is the reduction of SO(7) to [SU(2)I3. In the previous paper the more 
general problem, the SO(2n + 1)J SO(2n - 3)OSU(2)OSU(2) reduction, has been 
discussed. We shall study here the particular case n = 3. In 0 2 a systematic study is 
made of the relationship between the generators of S 0 ( 7 ) ,  either expressed in the 
‘natural’ basis connected to the [SU(2)I3 reduction or expressed in the ‘physical’ basis 
related to the principal SO(3) subgroup. Special attention is then confined in § 3 to 
the SO(7) symmetric irreducible unitary representations which are appropriate to the 
discussion of octupole vibrations of the nuclear surface. In § 4 explicit formulae are 
derived for the reduced matrix elements of the SO(7) generators which are not 
belonging to one of the three SU(2) groups, while in § 5 the obtained results are used 
to calculate the expectation value of the SO(7) second-order Casimir operator. 

G Vanden Berghe, H De Meyer and P De Wilde 

2. Generators 

For physical application it is essential that the irreducible representations of SO(7) 
can be decomposed into irreducible representations of the principal or physical 
subgroup SO(3). The SO(7) generators are then grouped as the SO(3) generators 
lo, together with a seven-dimensional qr and an eleven-dimensional pr irreducible 
tensor under SO(3). Considered in spherical tensor form, these generators satisfy the 
commutation relationships 

12.11 

12.2) 

(2.3) 

[ I , , P ~ I = -  J/2J3J5(1p5~15p +v)pIL tY ,  (2.4) 

[ p r , p Y ] =  - J 5 J ~ / ( 2 J 2 ~ 7 ) ( 5 p 5 ~ / 1 p  + Y ) I ~ + , , - -  JE /J? (5p5~ /5p  + v ) p c L t r  (2 .5)  

[ iW,  I,,] = - JZ(1p l v l l p  + Y)/,+,, 
[ lV, qY1= -2J5(1p3~13p + Y)qr+&, 

[qr,  4y]=-(1/2J7)(3p3~/1p + ~ ) 1 ~ + ~ - ( 3 p 3 ~ 1 3 p  + ~ ) q ~ + ~ + ( 3 p 3 ~ / 5 p  L ~ ) ~ r + u ,  

- _ -  

[qr, py] = J E / J ~ ( ~ ~ ~ v / ~ c L  + v)qp+u. (2.6) 

More explicit formulae for these commutators are given in the appendices of Vanden 
Berghe and De Meyer (1980) and De Meyer and Vanden Berghe (1980). 

In order to make the connection between this set of generators and the ones 
describing the SU(2)OSU(2)OSU(2) subgroup structure, it is easiest to proceed via 
the Cartan-Weyl (Wybourne 1974, Cartan 1894) formalism. Briefly, one needs to 
identify the commuting set H, (i = 1,2,3) and the stepping operators E, such that 
[H,, E,] = a,E,. One can choose H1 = lo, H2 = qo and H3 = po.  In order to obtain the 
standard form for E,, it is necessary to define besides P * ~ ,  p k 4  fourteen new operators 
as linear combinations of lkl, q*1, p * l ;  q*2, p+2 and q*3, p*3, i.e. 

S$i = A(’)1*1 +B(’)q*1+ C(’)p+I (i = 1,2, 3) ,  

cj = 1,2) ,  

(k = 1,2), 

P:; = D(’)q,2 + E(’)p*2 
(k) QYi = F(k)q*3 + G pk3 

such that 
( k )  ( k i  

[qi, P:;] = * P ) P 2 ; ,  [ q o ,  Q:k3‘1=*~ Q*3. ( 1 ) -  ( I ) i I )  
[qo ,  s*11- fcr  s*1, 
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(2.10) 

(2.11) 

(2.12) 

(2.13) 

The B") (i = 1,2,3), C'i' (i = 1,2) and D(i )  (i = 1,2) are 'normalisation' factors, 
which will be determined by supplementary conditions. It is easy to verify that the 
operators (2.7)-(2.13) also are stepping operators with respect to lo and po. Starting 
from this root structure, it is clear that a simple rotation will make the three commuting 
SU(2) subalgebras manifest. This corresponds to a change of basis from lo, 40 and PO 
to a linear combination of these three generators, called so, to and u0, such that 

[so, Sfl] = *sf;, [SO, I = 0 ,  [SO, QYJ] = 0 

[ to ,  sfj 1 = 0, [ t o ,  QZ;] = 0 

[Uo, SF; 1 = 0, [uo,QZ!]=*Q:". 

[ to ,  QZil= *QZL 
[UO, QYi I = 0, 

These conditions yield 

(2.14) 

(2.15) 

U O = & ( ~ ~ O -  14J6qo-2J21po). (2.16) 

Now we must impose a condition on s * ~  = Sy?, t,l = QFi and U + I =  Qgj such that 
[sCl, s - ~ ]  = =so, [t+l, t-l] = =to and [ u + ~ ,  u - ~ ]  = -UO. This yields - 3 / ( h f i ) ,  
D"' = -2/J3, D"'= -1/J3. The three commuting SU(2) subgroups are then 
generated by the sets {sCl, so, s - ~ } ,  {f+l, to, t-l} and { u + ~ ,  u0, U-1). The remaining 
generators SZ?, SFi, Pl': and P f i ,  p+4 and p*5 form a bispinor-vector Trlf 'f under 
the [SU(2)I3 subgroup. The subscripts on the bispinor-vector are s, t, U ordered. That 
is: 

(2.17) 

(2.18) 

(2.19) 

[s 
[ 1/2 1/2 11 

fi, (I y z 3 ( 1 / 2 a b I 1 / 2 a + ~ ) T  a+& P Y )  

[t 77[1/2 1/2 171 = 1 J- 11/2 1/2 11 
f i3 a y 2 ~ ( ~ / W ~ ~ L I ~ / ~ P + C L ) T  a P + f i y ¶  

[U p 1 / 2  1/2 11 r1/2 1/2 1 1 
fi, (I p yl=J%lrlcLllr+cL)T a Y + & .  

~ [ 1 / 2  1/2 111 = 1 J- 

The bispinor-vector nature is evident from considering the commutators of so, to and 
uo with each of the remaining generators. The values for the occurring normalisation 
factors are fixed by requiring that the remaining commutators involving s * ~ ,  t,l and 
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ual have the appropriate form. Thus, one finds 

Note that the T-generators are so defined that 
7 m 2  11.2 1lt = u + p + y  [1/2 1/2 11 

U 0 y (-1) T -a - p  - 7 '  (2.26) 

From equations (2.14)-(2.16) we can deduce the primary equation which relates the 
[SU(2)I3 basis and the S0(7)-S0(3) basis; namely 

(2.27) 

It is also interesting to deduce from (2.1)-(2,6), taking into account the definitions 
(2.20)-(2.24), the commutators of the elements of the bispinor-vector among them- 
selves. This gives: 

lo  = sg + 3fo + 3Uo. 

I1 
[T[1/2 1 /2  11 T[1/2 1 / 2  

U, P1 Y1 9 U 2  P2 Y 2  

= ( 1 / JZ)s,, ,-pzsyl, - y2 (- 1 ) 3 i 2 - p l  - Y y  1 / 2 ( ~  1 /2a21 1 (Y + a 2)s,1 +a2 

O/Wl 1/2P211P1 + P z ) f p , t p ,  
3/2-aI-y l  

1 - U  - 

+ ( 1 /J%%, . - u 2 s y ,  ,- yz (- 1 ) 

+ ( l / J ~ ) ~ u l - ~ 2 ~ p l , - p 2 ( - l )  @ ' ( l Y l  1 Y 2 1 1 Y l +  Y 2 ) U y 1 + Y * .  (2.28) 

3. Basis states and recursion relations for reduced matrix elements 

In the previous paper (De Meyer et a1 1982a) it has been proven that each symmetric 
irreducible representation [v, 0, 01 of SO(7) is fully reduced with respect to the product 
subgroup SU(2) @ SU(2) OSU(2). Therefore the corresponding state vectors will bear 
the labels IsuApv), where s(s + l), U ( U  + l ) ,  A ,  /L, v are the eigenvalues of s 2  or t 2 ,  
U*, sfl, to  and u0 respectively, since it has been shown that for this kind of representation 

s = t = 0,1 /2 ,1 ,  . , t.12 (3.1) 

and 

U = t' -2s, v -2s - 2 , .  , . , 1 or 0. (3.2) 

This reduction rule (3.1), (3.2) is not valid for general SO(7) irreducible representa- 
tions. There one needs for a complete classification of the representations, besides 
the z; quantum number, eight additional labels instead of the five introduced here. 
The symmetric representations, which are closely related to the octupole-phonon 
state vectors occurring in the nuclear collective model, are uniquely described by rule 
(3.1)-(3,2), i.e. within this reduction no degenerate states occur. It is evident that by 
combining the rules (3.1), (3.2) with the relation (2.27) one can determine the possible 
values of 1 and lo occurring in the S0(7)-S0(3) basis within the representation [U 0 01 
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by a method similar to the well known derivation of the Clebsch-Gordan series for 
SO(3). This specific property will be analysed and used in more detail in a forthcoming 
paper. 

In order to derive explicit expressions for the reduced matrix elements of the 
T[’/’ operators for our choice of basis states IsuApv), let us consider the linear 
combinations of these commutators with vector coupling coefficients of the type 
[TC112 ‘I2 ‘I, Tr112 ‘I2 11][wr7 with (p, q, r }  respectively equal to (1, 0, 0}, (0, 1, 0}, 
(0, 0, l}, {1,0,2}, (0, 1,2} and (1, 1, 1). Clearly one has 

[T[1/2 1/2 11 T[1/2 1/2 11 11 0 01 = 
9 I W O O  AsW, 

and in order to find A, we need merely consider one component, say p = -1; this 
yields A = J3.  In an analogous way one finds 
[T[1/2 1/2 11 T[1/2 1/2  11 [o 1 01 = JS 

9 1 0  W O  t,, 

9 I O O W  U, 9 
[ ~ [ 1 / 2  1/2 11 ~ [ 1 / 2  1 /2  11 [o 0 11 = JT 

[1/2 1 /2  1 3  p 1 / 2  1/2 11 [l 0 21 [T 7 I W O V  

= [T[1/2 1/2 11 T[1/2 1 / 2  11 [o 1 21 

- [T[1/2 1/2 11 T[1/2 1/2 11 [1 1 11 - 
, I O , ”  

- 9 l W v T  -0. 
Using the relation between these left-hand side objects and the tensor products of 
two T-operators, for the values of p ,  q, r considered above, one finds 

[T[1/2 112 11 TC1/2 l / 2  11 [ P  4 r1=  2(T[1/2 112 1lT[1/2 1/2 11 [ P  4 r] 
9 I P P V  ) a @ ? ,  

so that 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
Let us now restrict ourselves to the symmetric irreducible representations [U 0 01 of 
SO(7) and the corresponding [SU(2)I3 basis states lsuhpv). We consider the matrix 
elements between the states Isuhpv) and Is’u’h’p’v’) of the right-hand and left-hand 
sides of equations (3.31, ( 3 3 ,  (3.6) and (3.7). Since for our particular choice of basis 
states we have s = t (see (3.1)), equation (3.4) and one of the equations (3.6) are 
redundant. Applying to each of these matrix elements the Wigner-Eckart theorem, 
one finds by using equation (15.23) of De Shalit and Talmi (1963) and the reduced 
matrix elements of s and U 

[1/2 1 /2  1lT[1/2 1/2 11 [1 001 - 14- (T ) w o o  - 2  3s,, 

T ) O W 0  - 2  3t,, 

T ) W O Y  ) O b ”  0, 

T ) b ” T  

(T[1/2 1 / 2  11 [1/2 1/2 11 [o 1 01 - 
(@1/2 112 11 11/2 1 /2  

:I = 3 T 
(T[1/2 1 / 2  11 [1/2 112 11 [1 0 21 = ( T  [1/2 1/2 llT[1/2 1/2 11 [o 1 21 = 

( p 2  1 / 2  11 [1/2 1 /2  11 1 11 = 0. 
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(3.10) 

(3.11) 

where we have abbreviated (s‘u’IIT[’/’ ‘I’ ‘I Ilsu) by (s’u‘IIsu). 
From the properties of the 6 j  symbols on the left-hand side of (3.8) it follows that 

s’ = s and U ’  = U. The summation indices can then take on the values s” = s f 1/2 and 
U” = u f 1 or U. However, because of the intimate relation which exists due to 
(3.1)-(3.2) between u and s on the one side and s” and U” on the other side, it is 
clear that if the values s and u properly describe a symmetric [SU(2)]‘3’ representa- 
tion, the values s” = s f 1/2 and U‘‘ = u do not. This means that in the sum on the 
left-hand side of (3.8) only four terms have to be withheld. 

This yields, when writing out the explicit formulae for the occurring 6 j  symbols, 

(s + l)[(suIls - 1/2u + l>(s  - 1/2u  + lIlsu>+(suIIs - 1 /2u  - l>(s  - 1/2u  - lllsu>I 

-s[ (suI Is  + 1 / 2 u  + l ) (s  + 1 /2u  + 1Ilsu) 

+(suIIs + 1/2u -!l)(s + 1/2u - lllsu)] 

= 3s(s + 1)(2s + 1)2(2u + 1). (3.12) 

Due to (2.26) it follows that 

( s ’ u ‘ I I s u ) *  = (-1)2s-2s’+u-u’ (su IIs’u ‘>. (3.13) 

Taking this property into account and defining r = 2s, (3.12) becomes 

(r+2)[l(ru((r-lu+1)12+I(ruIlr-lu-1)12]-r[l(r+lu+lllru)12+I(r+lu -1llru)1~] 

= 5r(r + 1)2(r + 2)(2u + I). (3.14) 

Similarly in (3.9) one finds s’ = s, U ’  = u and s” = s f 1/2, U ”  = u f 1 to yield 

-u[j(r+lu+1Ilru>IZ+I(ruIlr-lu+1>1’]+(u + l ) [ / ( r + 1 ~ - 1 1 1 r u > 1 ~ + I ( r u l l r - l u - 1 ) 1 ~ ]  

= 2(r+ 1)’u(u + 1)(2u +I) .  (3.15) 

In a similar way one can deduce that (3.10) gives rise to two different relations, one 
based on s’ = s, U’ = u * 2, s” = s f 1/2, U ”  = u * 1 and the other following from the 
parameter choice s’ = s, U ’  = U, s” = s f 1/2, U ”  = u f 1, i.e. 

r(ru *2llr+ I u  * I ) ( r+ I u  * Illru)-(r +2)(ru *2llr - Iu * l ) ( r -  Iu * l((ru) = 0, 

and 
(3.16) 

(3.17) 

From (3.1 1) again two relations can be derived, i.e. for s’ = s, U ’  = U, s” = s f 1/2 and 
u ” = u f l  a n d f o r s ’ = s f l ,  u r = u , ” ’ = s f 1 / 2 a n d u ‘ ’ = u f 1  yielding 

r’[uj(r+ l u  + 111ru)12-(u + l)j(r+ l u  - lllru)1’] 

+ ( r + 2 ) ’ [ u l ( r u I l r - l ~ + 1 > 1 ’ - ( ~  +l)((rulIr-lu-1>1’]=0 (3.18) 
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and 

r [u  ( r  + 2ulJr + 1 u + 1)  ( r  + 1 u + Illru) - (u + I ) (r  + 2ullr + 1 u - 1)  ( r  + 1 u - 1llru)l 

+(r+2)[u(r-2ullr- l u  + l ) ( r -  l u  + lllru) 

-(U + l)(r-2uIlr- l u  - l ) ( r -  l u  - lllru)] = 0. (3.19) 

In equations (3.12), (3.14)-(3.19) four types of reduced matrix elements occur, i.e. 

(r+lu+ll lru)=A(r,  U), 

( r  - l u  + lllru) = C(r, U), 

( r  + l u  - 1Jlru) = B(r, U), 

( r  - l u  - Illru) = D(r, U). 

Due to (3.13)onefinds C(r, u)=B*(r -1 ,  u+l )andD( r ,  u)=A*(r -1 ,  u-l),sothat 
all previous relations are induction equations for A(r ,  U )  and B(r,  U )  which read as 
follows: 

(r+2)( lB(r-  1, U + 1)I2+IA(r- 1, U - l\’)-r(IA(r, u)(’+lB(r, U)(’) 

= $ r ( r  + 112(r +2)(2u + I ) ,  (3.20) 

-~( lA(r ,  u)l’ + IB(r - 1,  U + 1)/’) + (U + l)(IB(r, u)l’ + IA(r - 1, U - 1)12) 

= 2(r + I)’u(u + 1)(2u + I ) ,  (3.21) 

( 3 . 2 2 ~ )  

(3.22b) 

rB*(r, u+2)A(r ,  u ) - ( r+2)A(r - - l ,  u + l ) B * ( r - l ,  u + l ) = O ,  

rA  *(r,  u - 2)B  (r, U )  - ( r  + 2)B  ( r  - 1, u - l )A  *( r - 1, u - 1) = 0,  

r[u(2u -1)IA(r,u)12+(u +1)(2u +3))B(r ,  u ) ( ’ ] - ( r+2)[~(2u  - l ) \ B ( r - l ,  u +1)12 

+ ( ~ + 1 ) ( 2 u + 3 ) I A ( r - l ,  ~-1)1’]=0,  (3.23) 

r2[ulA(r, u) I2 - (u  + l)IB(r, u)I2]+ (r+2)*[uIB(r- 1, u +1)12 

-(U + 1)IA(r - 1, u - 1)12] = 0,  (3.24) 

r [uB(r+l ,  u + l ) A ( r ,  u ) - ( u + l ) A ( r + l ,  u - l ) B ( r ,  U)] 

+(r+2)[uA*(r-2,  u )B*(r-1 ,  u + l )  

- (u+l )B*(r -2 ,  u ) A * ( r - l ,  u - l ) ] = O .  (3.25) 

4. Solution of the induction equations 

From equations (3.20), (3.21) and (3.23), one can solve three of the occurring squares 
in terms of the fourth; this yields 

(4.1) 

(4.3) 

lB(r-1, u +l)l2=r/(r+2)IA(r ,  u)I2+$r(r+1)‘(u +1)(2u+3),  

IA(r - 1, U - 1)12 = ur/ [ (u  + l ) ( r  + 2)]1A(r, U)/’ +$ur(r + 1)(2r + 2u + 31, 

IB(r, u) I2= u / ( u  + 1)1A(r, u)lz+$u(2u + l ) ( r +  l)(r+2)’. 
(4.2) 

From (4.1) and (4.3) it follows that 

JB(r, u+2)I2= ( r+l ) / ( r+3) lA( r+l ,  u +1>1’+1/2(r+l)(r+2)’(u +2)(2u + 5 )  

= ( ~ + 2 ) / ( u + 3 ) I A ( r ,  u+2)12+1/2(r+l)(r+2)’(u +2)(2u+5).  
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This shows that 

r u + l  -lA(r, u)l’ =,+ZIA(r - 1, u + 1)l’ 
r + 2  (4.4) 

and (4.2) can be written as 

(U + l ) ( r  + 1) 
( U  +2) ( r+3)  

jA(r+ 1, U + 1)12 

= IA(r, u)12-$(u + l ) ( r+  l ) ( r+2)(2r+2u +7). 

Substituting now 

lA(r, u)l2 = (U + l ) ( r  + l ) ( r  +2)X(r, U )  

into (4.4) and (4.5) yields 

and 
X ( r -  1, u + 1) = X(r, U )  

X ( r  + 1, u + 1) =X(r ,  U )  -;(2r +2u +7). 

Combining these two equations leads to 

~ ( r + 2 ,  U )  =X(r ,  U )  -&r +2u  +7)  

X(r, u + 2) = X(r, U )  -8(2r + 2u + 7). 
and 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The solution X(r, U )  satisfying equations (4.9) and (4.10) and the boundary condition 
X(r, U )  = 0 for r + u = v,  which is a consequence of (3.2) and the explicit definition of 
X(r, U), can be written as 

X(r, U )  =$(U - U  -r)(v + u + r + 5 )  

IA(r, U)/’ = f ( u  + l ) ( r+  l ) ( r+2)(v  - U  -r)(v + U  +r+5) .  
or 

(4.11) 

Substituting this result into (4.3) yields 

IB(r, u)I2 = i u ( r  + l ) ( r  +2)(u + U  - r  + l ) ( v  - U  + r  +4) .  (4.12) 

The reader can now easily convince himself of the fact that (4.11) and (4.12) are 
also solutions of equations (3.22), (3.24) and (3.25) which are redundant for finding 
explicit expressions for A and B. The solution to the induction equations is completed 
once we adopt the phase convention that the reduced matrix elements are the positive 
square roots of lA(r, U)[* and lB(r, u)I’, giving 

( r  + l u  + lllT[1’2 ‘ I 2  ‘’llru) = $[(U + l ) ( r  + l ) ( r  + 2)(v - U - r)(u + u + r + 5)]”’, (4.13) 

( r + l u  - 1 ~ 1 ~ ~ ~ ’ ~ ’ ’ ~  ‘ 1 ~ ~ r u > = ~ [ u ( r + l ) ( r + 2 ) ( v + u - r + l ) ( v - u + r + 4 ) 1 ’ ’ 2 .  (4.14) 

5. The use of the reduced matrix elements 

The second-order Casimir operator is in general defined as 
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where ,yp and xc are the generators of the group and gF the reciprocal metric tensor, 
whereby the metric tensor is defined in terms of the structure constants. For the 
group SO(7) in the reduction to [SU(2)I3, the structure constants are either given in 
the right-hand sides of (2.17)-(2.19) and (2.28) or are the well-known SU(2) structure 
constants. By this, I2 for the SO(7) group can be written as follows: 

[1/2 1/2 11 [ 1/2 1/2 11 [1/2 1/2 1]T[ 1/2 1/2 1]-2T[1/2 1/2 1]T[ 1/2 1/2 11 
I 2  = -27' 112 112 1 T -112 -112 -1 + 2 T  112 112 0 -112 -1/2 0 1/2 1/2 -1 -1/2 -1/2 1 

+2T[1/2 1/2 11 [ 1/2 1/2 11 [1/2 1/2 'IT[ 1/2 1/2 11 
1/2  -112 1 T -112 112 -1 -2T 1/2 -1/2 o -1/2 1/2 o 

+2T[::9 -:$-:IT[-:$ :$ :1+3So-S0(s0- 1)+2~+1~-1+2t+it-i  
1 - to ( to - l )+u+ lu - l -~uo(uo- l ) ,  

or this can be written in a short-hand notation as 

(5.1) I2 = -2,/s(T[1/2 1/2 11 [1/2 1/2 11 [Oool 1 2-  2 2 T > 0 0 0 - 2 u  s - - t  * 

The expectation value of this operator with respect to the basis states IsuApv) can be 
written as 

( S U A ~ ~ ~ I ~ ~ S U A ~ ~ )  

= -2 Js(sUhpvJ(T11/2 1/2 11 [1/2 1/2 11 [0001 T o o o I ~ ~ h p v )  

-&U + 1) - 2s(s + l), (5.2) 
taking into account that for the considered symmetric irreducible representations 
(s2) = (t2). The matrix element on the right-hand side of (5.2) reduces by taking into 
account the Wigner-Eckart theorem to 

( s u h w  I (5- T o o o  IsuApv) 
[1/2 1 /2  11 [1/2 1 /2  13 [ O O O ]  

= (-1) 2s-A-w+u-u(  

- h O A  s)(  - p o p  ">( 
[1/2 1/2 11 [1/2 1/2 11 [O 0 01 x (SUII(T T ) llsu) 

(5.3) 
By applying equation (15.23) of De Shalit and Talmi (1963) in order to determine 
the occurring matrix element, and by taking into account the rule (3,1), (3.2), one finds 

= (2s + 1)-'(2u + 1)-'/2(sUII(T[1/2 112 11 [1/2 1/2 11 [o 0 01 T 1 Ilsu). 

(sull(77['/2 1/2 11T[1/2 1/2 11 [o 01 1 llsu) 

+ ~ ( r u ~ J r - l u  -1)12+I(rullr-lu+1)12], 

which by introducing (4.13) and (4.14) reduces to 
(sull(T[1/2 1/2 1lT[1/2 1/2 11 [o 0 01 ) llsu) 

= ( 1 / 4 J S ) ( 2 ~ + 1 ) ( 2 ~  + 1 ) ' / 2 [ ~ ( ~  + ~ ) - u ( u  + 1 ) - 4 ~ ( ~ + 1 ) ] .  (5.4) 
Combining (5.2), (5.3) and (5.4), one deduces that 

( s u A ~ v ~ I ~ J s u A ~ v ) =  -$u (u  + 5 ) ,  

a result which is well known (Weber et a1 1966). 
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6.  Conclusion 

The reduction of SO(7) to the [SU(2)I3 subgroup structure which is a particular case 
of the SO(2n + 1) reduction to SU(2)OSU(2)OS0(2n -3)  discussed in the previous 
paper (De Meyer er al 1982a), has been analysed here in detail. The explicit form 
of the different SU(2) generators and the remaining generators which are forming a 
bispinor-vector are explicitly given in terms of the generators of the principal SO(3) 
subgroup of SO(7) and the seven- and eleven-dimensional irreducible tensor rep- 
resentations with respect to this SO(3). Using the branching rule for the 
SO(7) .1 [SU(2)I3 reduction of symmetric irreducible representations, which produces 
an unambiguous state labelling scheme, explicit expressions for the reduced matrix 
elements of the generators with respect to this basis were derived. It has been shown 
that these expressions can be very useful in the derivation of expectation values of, 
for example, SO(7) invariants. 

Another important result of this analysis is the relation (2.27) which relates the 
[SU(2)I3 basis and the S0(7)-S0(3) basis. It permits us to determine in a rather easy 
way the angular momentum contents of a particular SO(7) representation if the range 
of the three SU(2) labels is known. For the symmetric representations [U 0 01 of SO(7) 
the range of these labels has been fixed in the previous paper, so that for these 
particular representations the allowed I-values can be determined. Previously this 
information could only be derived by considering characters, a method which is usually 
quite involved. The relation (2.27) opens possibilities to define so-called ‘intrinsic 
states’ in the sense in which they have been introduced by Williams and Pursey (1968) 
in their SO(5) .1 SU(2) OSU(2) reduction study, and to derive analytical expressions 
for the reduced matrix elements of q and p with respect to the physical bh is  states 
labelled by the angular momentum quantum number. On this subject we hope to 
report in the near future. 
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